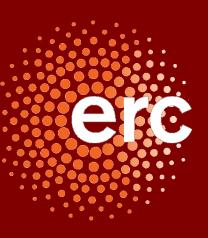


Competition in periodic media: pulsating fronts & segregation Léo Girardin (joint work with Grégoire Nadin)

Laboratoire Jacques-Louis Lions, CNRS, University Pierre et Marie Curie, Paris (France) ERC MESOPROBIO girardin@ljll.math.upmc.fr



BISTABLE COMPETITION-DIFFUSION SYSTEM IN PERIODIC ONE-DIMENSIONAL SPACE

$\succ d, k, \alpha, L > 0,$

 $\begin{cases} \partial_t u_1 = \partial_{xx} u_1 + u_1 f_1(u_1, x) - k u_1 u_2 \\ \partial_t u_2 = d \partial_{xx} u_2 + u_2 f_2(u_2, x) - \alpha k u_1 u_2. \end{cases}$

- ➤ for any $i \in \{1, 2\}, f_i \in \mathcal{C}^1([0, +\infty) \times \mathbb{R}),$
- $> f_i$ *L*-periodic w.r.t. x,
- $\succ f_i$ decreasing w.r.t u and $f_i(0, \bullet)$ positive.

Extinction states and bistability

Provided k is large enough, this problem has two remarkable stable periodic stationary states: the *extinc*tion states $(a_1, 0)$ and $(0, a_2)$. **Technical assumption:** a_1 and a_2 are positive constants. Typically, $uf_i(u, x) = \mu_i(x) u(a_i - u)$.

Competition-induced segregation

The extensively studied strong competition limit $(k \rightarrow$ $+\infty$) segregates the supports of u_1 and u_2 , whence a free boundary problem arises [3, 4, 5].

PULSATING FRONT SOLUTION

Definition

A solution (u_1, u_2) is a *(bistable) pulsating front* if there exists a speed c and a profile (φ_1, φ_2) such that:

This definition follows what has been proposed in the scalar situation to generalize the concept of traveling wave [1, 2].

Uniqueness

- > The speed $c_{d,\alpha,f_1,f_2,k}$ is unique;
- > The profile $(\varphi_1, \varphi_2)_{d,\alpha, f_1, f_2, k}$ is unique, up to translation w.r.t. ξ .

Question

What is the sign of the speed when the interspecific competition is large and when the two species have different diffusion rates?

➤ for any $(t, x) \in \mathbb{R}^2$,

 $(u_1, u_2)(t, x) = (\varphi_1, \varphi_2)(x - ct, x),$

 $\succ \varphi_1$ and φ_2 are resp. decreasing and increasing w.r.t. $\xi = x - ct$,

 $\succ \varphi_1$ and φ_2 are periodic w.r.t. x,

 \succ as $\xi \to +\infty$, uniformly w.r.t. x,

 $\begin{cases} |(\varphi_1, \varphi_2)(-\xi, x) - (a_1, 0)| \to 0, \\ |(\varphi_1, \varphi_2)(\xi, x) - (0, a_2)| \to 0. \end{cases}$

Existence

L, α , f_1 and f_2 are chosen such that for any value of d, there exists a family of pulsating fronts $((u_{1,k}, u_{2,k}))_{k>k^{\star}}$

A consequence of our existence result

From [8], the preceding assumption is satisfied if

 $L^2 \| f_1(0, \bullet) \|_{L^{\infty}_{per}} \le \pi^2.$

Importance of the sign of the speed

> If c > 0, then u_1 chases u_2 and invades its habitat; conversely, if c < 0, u_2 chases u_1 .

 \succ Bistable fronts are usually globally attractive for Cauchy problems with front-like initial data.

Hence, w.r.t. these Cauchy problems, the winner of the competition is entirely determined by the sign of the speed.

STRONG COMPETITION LIMIT

Standard compactness estimates provide limiting values c_{∞} , $u_{1,\infty}$ and $u_{2,\infty}$.

Segregation relation

Let

 $w = \alpha u_{1,\infty} - du_{2,\infty}$.

Then the segregation relation is

Quasi-linear parabolic equation Let

 $\eta: (z,x) \mapsto f_1\left(\frac{z}{\alpha}, x\right) z^+ - \frac{1}{d} f_2\left(-\frac{z}{d}, x\right) z^-,$

 $\sigma: z \mapsto \mathbf{1}_{z>0} + \frac{1}{d} \mathbf{1}_{z<0}.$

Then w is a non-zero sign-changing locally bounded weak solution [6] of

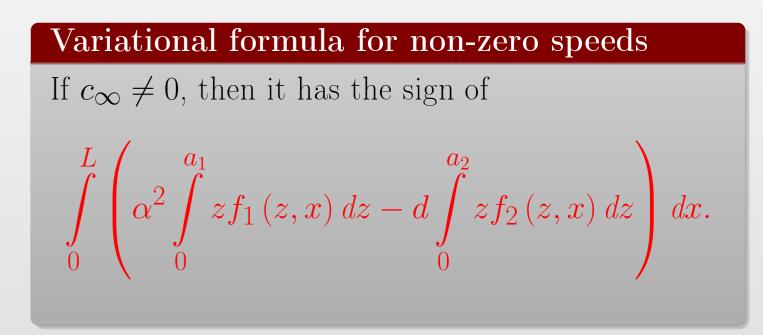
Non-zero speeds

If $c_{\infty} \neq 0$, then $\alpha u_{1,\infty}$ and $-du_{2,\infty}$ (restricted to their resp. support) are two scalar semi-pulsating fronts traveling both at the speed c_{∞} and connecting resp. αa_1 to 0 and 0 to $-da_2$.

 \succ The free boundary condition is explicit.

> Such a solution is unique (up to translation w.r.t. ξ of its profile) and is associated with a unique speed. Hence the whole family $(c_k)_{k>k^*}$ converges to c_{∞} as $k \to +\infty$. w is called the segregated pulsating front with speed c_{∞} .

 \succ The profile ϕ of w satisfies



Zero speeds

If $c_{\infty} = 0$, w depends only on x and is regular. > If x_0 is a zero of w, then

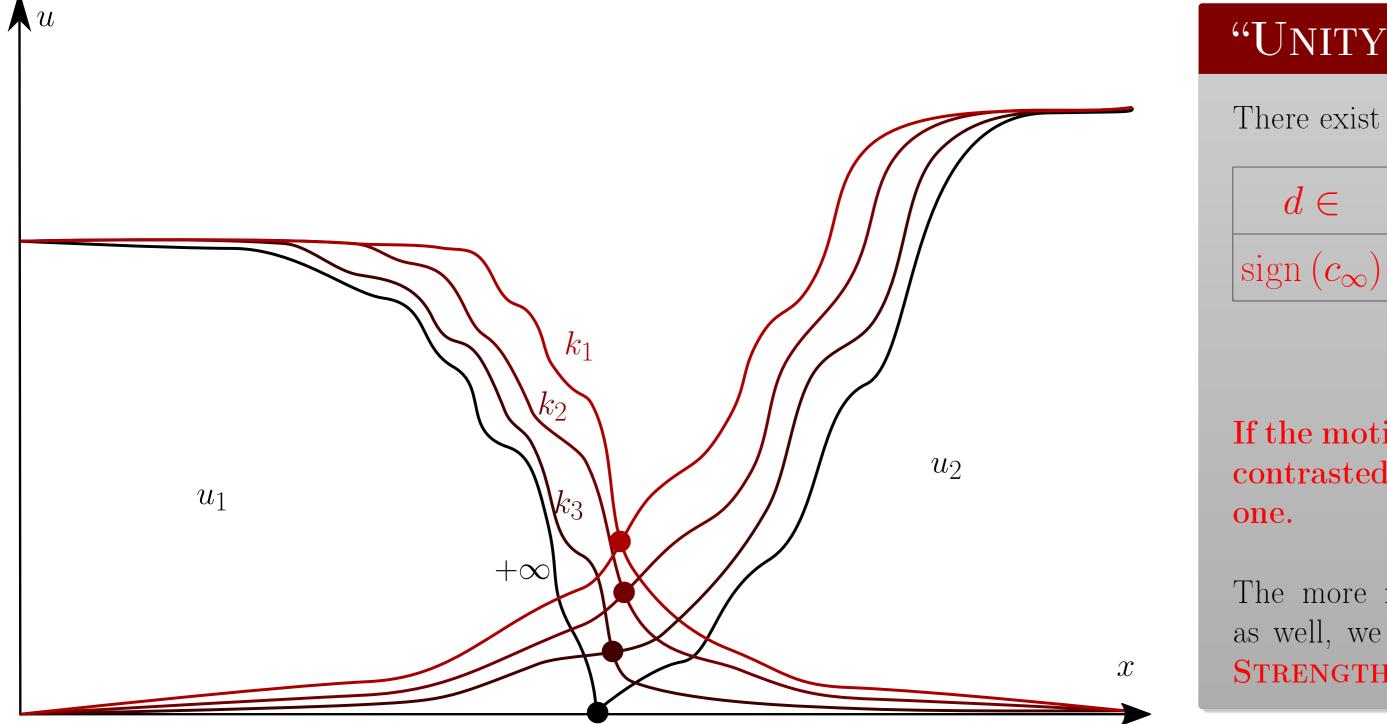
 $\begin{pmatrix} \alpha u_{1,\infty} \\ du_{2,\infty} \end{pmatrix} = \begin{pmatrix} w^+ \\ w^- \end{pmatrix}.$

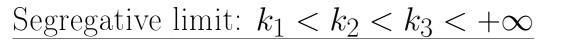
 $\sigma(w) \partial_t w - \partial_{xx} w = \eta(w, x).$

 $-\left(\partial_{\xi\xi} + \partial_{xx} + 2\partial_{x\xi}\right)\phi - \sigma\left(\phi\right)c_{\infty}\partial_{\xi}\phi = \eta\left(\phi, x\right).$

 $(w^{+})'(x_{0}) = -(w^{-})'(x_{0}).$

> Only w^- depends on d. Hence provided d is small or large enough, $c_{\infty} \neq 0$.

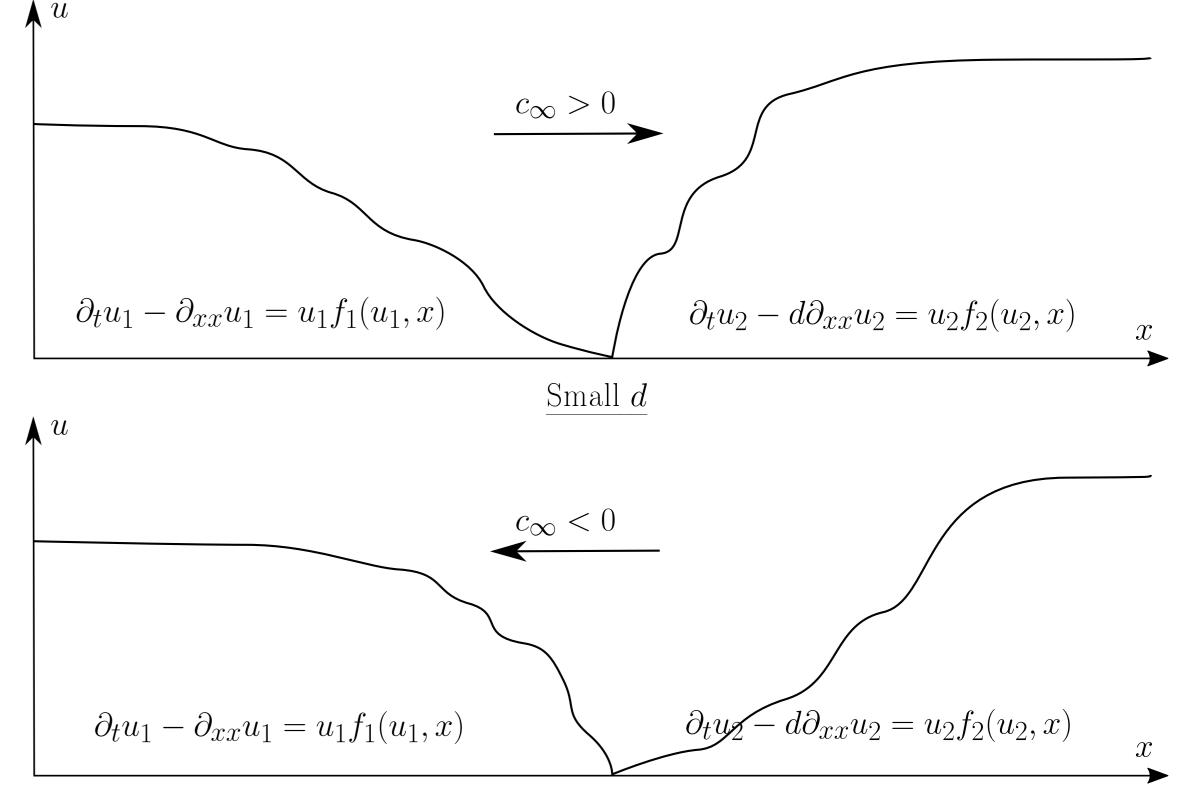




"UNITY IS NOT STRENGTH"			
There exist $D^- > 0$ and $D^+ > D^-$ such that			
$d \in$	$(0, D^{-})$	$[D^-, D^+]$	$(D^+, +\infty)$
$\operatorname{digm}(\mathbf{a})$	ı 1	?	1

If the motilities of the two species are sufficiently contrasted, then the invader is the more motile one.

The more motile one being the more dispersed one as well, we say that, for this model, **UNITY IS NOT** STRENGTH.



Large d

CONCLUSION

Remarks

- \succ Extends our previous result in homogeneous media 9
- \succ Together with the result of Dockery, Hutson, Mischaikow and Pernarowski [7], leads to the idea that a very motile invasive species chases a less motile resident if and only if the interspecific competition is strong.
- \succ Constructive proof of the existence of some scalar bistable quasi-linear fronts.
- \succ Independent interest of the free boundary problem associated with the segregated pulsating fronts.

Open questions

- \succ Generalization to non-constant a_1 and a_2 (variational formula for the sign of the speed nongeneralizable).
- \succ Generalization to non-positive $\min_{x \in [0,L]} f_i(0,x)$.
- \succ Uniqueness of w when $c_{\infty} = 0$.
- \succ Continuity of $\partial_t w$ and $\partial_{xx} w$ when $c_{\infty} \neq 0$.
- \succ Continuity of $d \mapsto c_{\infty}$ in $(0, +\infty)$ (continuity in $(0, D^{-}) \cup (D^{+}, +\infty)$ established, global continuity only conjectured).

REFERENCES

- [1] H. Berestycki and F. Hamel. Front propagation in periodic excitable media. Communications on pure and applied math*ematics*, 55(8):949–1032, 2002.
- [2] H. Berestycki, F. Hamel, and L. Roques. Analysis of the periodically fragmented environment model: II—biological invasions and pulsating travelling fronts. Journal de Mathé*matiques pures et appliquées*, 84(8):1101–1146, 2005. [3] E. C. M. Crooks, E. N. Dancer, D. Hilhorst, M. Mimura, and H. Ninomiya. Spatial segregation limit of a competitiondiffusion system with Dirichlet boundary conditions. Nonlinear Analysis: Real World Applications, 5(4):645–665, 2004.
- [4] E. N. Dancer, D. Hilhorst, M. Mimura, and L. A. Peletier. Spatial segregation limit of a competition-diffusion system. European Journal of Applied Mathematics, 10(02):97–115, 1999.
- [5] E. N. Dancer, K. Wang, and Z. Zhang. Dynamics of strongly competing systems with many species. Transactions of the American Mathematical Society, 364(2):961–1005, 2012.
- [6] E. DiBenedetto. Degenerate Parabolic Equations. Springer-Verlag, New York, 1993.
- [7] J. Dockery, V. Hutson, K. Mischaikow, and M. Pernarowski. The evolution of slow dispersal rates: a reaction diffusion model. Journal of Mathematical Biology, 37(1):61-83, 1998.
- [8] L. Girardin. Competition in periodic media: I Existence of pulsating fronts. page to appear, 2016.
- [9] L. Girardin and G. Nadin. Travelling waves for diffusive and strongly competitive systems: relative motility and invasion speed. European Journal of Applied Mathematics, 26(4):521-534, 2015.

Séminaire de Mathématiques Supérieures, Edmonton (Canada), June 2016