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Bistable competition�diffusion system in periodic one-dimensional space

Di�usive Lotka�Volterra system{
∂tu1 = ∂xxu1 + u1f1 (u1, x)− ku1u2

∂tu2 = d∂xxu2 + u2f2 (u2, x)− αku1u2.

â d, k, α, L > 0,

â for any i ∈ {1, 2}, fi ∈ C1 ([0,+∞)× R),

â fi L-periodic w.r.t. x,

â fi decreasing w.r.t u and fi (0, •) positive.

Extinction states and bistability

Provided k is large enough, this problem has two re-
markable stable periodic stationary states: the extinc-
tion states (a1, 0) and (0, a2).
Technical assumption: a1 and a2 are positive con-
stants. Typically, ufi (u, x) = µi (x)u (ai − u).

Competition-induced segregation

The extensively studied strong competition limit (k →
+∞) segregates the supports of u1 and u2, whence a
free boundary problem arises [3, 4, 5].

Pulsating front solution

De�nition

A solution (u1, u2) is a (bistable) pulsating front if
there exists a speed c and a pro�le (ϕ1, ϕ2) such
that:

â for any (t, x) ∈ R2,

(u1, u2) (t, x) = (ϕ1, ϕ2) (x− ct, x) ,

â ϕ1 and ϕ2 are resp. decreasing and increasing
w.r.t. ξ = x− ct,

â ϕ1 and ϕ2 are periodic w.r.t. x,

â as ξ → +∞, uniformly w.r.t. x,{
|(ϕ1, ϕ2) (−ξ, x)− (a1, 0)| → 0,
|(ϕ1, ϕ2) (ξ, x)− (0, a2)| → 0.

This de�nition follows what has been proposed in the
scalar situation to generalize the concept of traveling
wave [1, 2].

Existence

L, α, f1 and f2 are chosen such that for any
value of d, there exists a family of pulsating fronts((
u1,k, u2,k

))
k>k?

.

A consequence of our existence result

From [8], the preceding assumption is satis�ed if

L2‖f1 (0, •) ‖L∞per ≤ π2.

Uniqueness

â The speed cd,α,f1,f2,k is unique;

â The pro�le (ϕ1, ϕ2)d,α,f1,f2,k is unique, up to trans-
lation w.r.t. ξ.

Importance of the sign of the speed

â If c > 0, then u1 chases u2 and invades its

habitat; conversely, if c < 0, u2 chases u1.

â Bistable fronts are usually globally attractive for
Cauchy problems with front-like initial data.

Hence, w.r.t. these Cauchy problems, the winner of
the competition is entirely determined by the sign of
the speed.

Question

What is the sign of the speed when

the interspeci�c competition is large

and when the two species have di�er-

ent di�usion rates?

Strong competition limit

Standard compactness estimates provide limiting val-
ues c∞, u1,∞ and u2,∞.

Segregation relation

Let

w = αu1,∞ − du2,∞.

Then the segregation relation is(
αu1,∞
du2,∞

)
=

(
w+

w−

)
.

Quasi-linear parabolic equation

Let

η : (z, x) 7→ f1

(z
α
, x
)
z+ − 1

d
f2

(
−z
d
, x
)
z−,

σ : z 7→ 1z>0 +
1

d
1z<0.

Then w is a non-zero sign-changing locally bounded

weak solution [6] of

σ (w) ∂tw − ∂xxw = η (w, x) .

Non-zero speeds

If c∞ 6= 0, then αu1,∞ and−du2,∞ (restricted to their
resp. support) are two scalar semi-pulsating fronts
traveling both at the speed c∞ and connecting resp.
αa1 to 0 and 0 to −da2.

â The free boundary condition is explicit.

â Such a solution is unique (up to translation w.r.t. ξ
of its pro�le) and is associated with a unique speed.
Hence the whole family (ck)k>k? converges to
c∞ as k → +∞. w is called the segregated pulsat-
ing front with speed c∞.

â The pro�le φ of w satis�es

−
(
∂ξξ + ∂xx + 2∂xξ

)
φ− σ (φ) c∞∂ξφ = η (φ, x) .

Variational formula for non-zero speeds

If c∞ 6= 0, then it has the sign of

L̂

0

α2 a1ˆ

0

zf1 (z, x) dz − d
a2ˆ

0

zf2 (z, x) dz

 dx.

Zero speeds

If c∞ = 0, w depends only on x and is regular.

â If x0 is a zero of w, then(
w+)′ (x0) = − (w−)′ (x0) .

â Only w− depends on d.

Hence provided d is small or large enough, c∞ 6= 0.

u1
u2

x

u

k1

k2

k3

+∞

Segregative limit: k1 < k2 < k3 < +∞

�Unity is not strength�

There exist D− > 0 and D+ > D− such that

d ∈ (0, D−) [D−, D+] (D+,+∞)

sign (c∞) +1 ? −1

If the motilities of the two species are su�ciently

contrasted, then the invader is the more motile

one.

The more motile one being the more dispersed one
as well, we say that, for this model, Unity is not

Strength.

∂tu1 − ∂xxu1 = u1f1(u1, x) ∂tu2 − d∂xxu2 = u2f2(u2, x) x

u

c∞ > 0

Small d

∂tu1 − ∂xxu1 = u1f1(u1, x) ∂tu2 − d∂xxu2 = u2f2(u2, x)
x

u

c∞ < 0

Large d

Conclusion

Remarks

â Extends our previous result in homogeneous media
[9].

â Together with the result of Dockery, Hutson, Mis-
chaikow and Pernarowski [7], leads to the idea that
a very motile invasive species chases a less

motile resident if and only if the interspeci�c

competition is strong.

â Constructive proof of the existence of some scalar
bistable quasi-linear fronts.

â Independent interest of the free boundary problem
associated with the segregated pulsating fronts.

Open questions

â Generalization to non-constant a1 and a2 (vari-
ational formula for the sign of the speed non-
generalizable).

â Generalization to non-positive minx∈[0,L] fi (0, x).

â Uniqueness of w when c∞ = 0.

â Continuity of ∂tw and ∂xxw when c∞ 6= 0.

â Continuity of d 7→ c∞ in (0,+∞) (continuity in(
0, D−

)
∪
(
D+,+∞

)
established, global continu-

ity only conjectured).
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